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Using the zero time-delay second-order correlation function for studying photon statistics, we investigate how
the photon statistics of field-modes generated by the parametric down-conversion (PDC) process depends on
the photon statistics of the pump field-mode. We derive general expressions for the zero time-delay second-order
correlation function of the down-converted field-modes for both multi-mode and single-mode PDC processes.
We further study these expressions in the weak down-conversion limit. We show that for a two-photon two-mode
PDC process, in which a pump photon splits into two photons into two separate field-modes, the zero time-delay
second-order correlation function of the individual down-converted field-modes is equal to twice that of the pump
field-mode. Furthermore, for an n-photon n-mode down-conversion process, in which a pump photon splits into
n photons into n separate field-modes, the zero time-delay second-order correlation function of the individual
down-converted field-modes is equal to 2(n−1) times that of the pump field- mode. However, in contrast to multi-
mode PDC processes, for a single-mode PDC process, in which a pump photon splits into two or more photons
into a single mode, the zero time-delay second-order correlation function of the down-converted field-mode is
not proportional to that of the pump in the weak down-conversion limit. Nevertheless, we find it to be inversely
proportional to the average number of photons in the pump field-mode. © 2020 Optical Society of America

https://doi.org/10.1364/JOSAB.396618

1. INTRODUCTION

Parametric down-conversion (PDC) is a nonlinear process in
which a pump photon of higher frequency splits into two or
more photons of lower frequencies [1–9]. In the case of a two-
photon PDC, the down-converted photons are called signal
and idler photons [10]. Generation of these photons satisfies
both energy and momentum conservation laws, i.e., the sum
of the energies of the signal and idler photons is equal to the
energy of the pump photon, and the sum of the momenta of
the signal and idler photons is equal to the momentum of the
pump photon. Due to energy and momentum conservations,
these down-converted photons become entangled in various
degrees of freedom such as energy–time [11,12], polarization
[13,14], position–momentum [15], angular momentum–angle
[16,17], etc. The entanglement of PDC photons is used in vari-
ous applications such as quantum teleportation [18], quantum
gates [19], quantum cryptography [20], etc.

Many previous studies have focused on the characterization
of down-converted field-modes in various degrees of freedom
[4,21–34]. Several of these studies are based on the parametric
approximation, wherein the pump field-mode is considered

as a strong classical field-mode, and the operators associated
with the pump field-mode are replaced by complex numbers in
the PDC Hamiltonian [28–31]. On the other hand, treating
the pump as a quantized field-mode opens up the possibility of
studying many other interesting phenomena such as squeezing
[32,33], photon number correlation [4,34], phase correlation
[35], sub-Poissonian photon statistics [36], non-classical states
generation [32,37], etc.

In this paper, we treat the pump as a quantized field-mode and
investigate how the photon statistics of the pump field-mode
affects the statistics of the down-converted field-modes. As the
PDC is a unitary process, the state of the down-converted field-
modes is calculated by solving the unitary time dynamics of the
pump field-mode governed by the Hamiltonian that describes
the PDC process [4,38–40]. We characterize the photon statis-
tics of the pump and the down-converted field-modes using the
second-order correlation function, which is defined as [41–43]

g (2)(τ )=
〈a †(0)a †(τ )a(τ )a(0)〉

〈a †(0)a(0)〉2
, (1)
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where a †(a) is the creation (annihilation) operator of the
field-mode. When the time delay τ = 0, the corresponding
correlation function g (2)(0) is referred to as the zero time-delay
second-order correlation function. It is a very important quan-
tity and is used for studying the quantum aspects of light such as
anti-bunching and sub-Poissonian statistics [44–49]. Moreover,
g (2)(0) is also used as a measure of purity for single photon
sources [50–52]. A field-mode with g (2)(0) larger than one
shows super-Poissonian photon statistics, whereas a field-mode
with g (2)(0) smaller than one shows sub-Poissonian photon
statistics. For a Poissonian field-mode, g (2)(0) is unity. Using the
zero time-delay second-order correlation functions, we inves-
tigate how the photon statistics of the field-modes generated
by multi-mode and single-mode parametric down-conversion
processes depends on the photon statistics of the pump field-
mode. We derive general expressions for the g (2)(0) of the
down-converted field-modes and further study them under the
weak down-conversion limit.

This paper is organized as follows: in Section 2, we consider
multi-mode PDC processes and derive relations between the
zero time-delay second-order correlation function of the pump
field-mode with that of the individual down-converted field-
modes. In Section 3, we investigate the photon statistics in the
single-mode PDC process. Finally, we summarize our results in
Section 4.

2. MULTI-MODE PDC PROCESS

In this section, we discuss multi-mode PDC processes, in which
a pump photon splits into two or more photons into as many
separate field-modes [53–58].

A. Two-Photon Two-Mode PDC Process

First, we consider the two-photon two-mode PDC process, in
which a pump photon splits into two photons into two separate
modes. The Hamiltonian for the two-photon two-mode PDC
process is given by [4,6,59,60]

H =ωpa †
pa p +ωs a †

s a s +ωi a
†
i ai + η(a pa †

s a †
i + a †

pa s ai ),

(2)
where ωp , ωs , and ωi are the frequencies of the pump, signal,
and idler field-modes, respectively. They satisfy ωp =ωs +ωi .
The field-mode operators a p(a †

p), a s (a †
s ), and ai (a

†
i ) are the

annihilation (creation) operators for the pump, signal, and
idler field-modes, respectively. The coupling constant η is given
by [55]

η≈
σ 2

p

σ 2
1 + 2σ 2

p

√√√√ 16~π3c 3χ
(2)
eff

ε0µ2
s µ

2
i µ

2
p Lλ3

pσ
2
p

, (3)

where χ (2)eff is the effective second-order nonlinearity. σ1 is the
field-mode diameter of the signal–idler detection system [55],
and σp is the pump beam waist. The refractive indices of the
pump, signal, and idler photons inside the crystal are given by
µp , µs , and µi respectively. L is the length of the crystal, λp

is the wavelength of the pump, and c is the speed of light in
free space.

The Hamiltonian given in Eq. (2) can be written in the inter-
action picture as [4,6,59,60]

HI = η(a pa †
s a †

i + a †
pa s ai ). (4)

In most studies, the above interaction Hamiltonian is solved
by considering parametric approximation, i.e., by replacing
the pump annihilation and creation operators by complex
numbers [6,28–31]. In this approximation, HI becomes
η(αpa †

s a †
i + α

∗
pa s ai ), where a p and a †

p are replaced by complex
numbers αp and α∗p , respectively. However, this is true only if
the pump field-mode is in the coherent state. But, the pump
field-mode operators cannot be replaced by complex numbers
if the pump field-mode is in anything other than the coherent
state.

In this study, we consider the Hamiltonian given in Eq. (4).
Let the initial state of the pump be |ψ〉p , and the signal and idler
field-modes be in their respective vacuua. Thus, at time t = 0,
the state |9(0)〉 of the pump, signal, and idler field-modes can
be written as |9(0)〉 = |ψ〉p |0〉s |0〉i , where |ψ〉p =

∑
k c k |k〉p ,

and c k satisfies
∑

k |c k |
2
= 1. Here, |m〉p represents the state of

the pump field-mode with m photons in it, etc. The state |9(t)〉
of the three field-modes after time t can be shown to be

|9(t)〉 = e−i HI t
|9(0)〉

=

(
I − i t HI −

t2

2
H2

I +
i t3

3!
H3

I +
t4

4!
H4

I − . . .

)
× |ψ〉p |0〉s |0〉i

=
1
√

N1
[A0|ψ〉p |0〉s |0〉i + A1|ψ〉p |1〉s |1〉i

+ A2|ψ〉p |2〉s |2〉i + A3|ψ〉p |3〉s |3〉i

+ A4|ψ〉p |4〉s |4〉i + . . .], (5)

where

A0 = 1−

(
η2t2

2!
−
η4t4

4!

)
a †

pa p +
5η4t4

4!
a †2

p a2
p + . . . , (6a)

A1 =

(
−iηt +

iη3t3

3!

)
ap +

5iη3t3

3!
a †

p a2
p + . . . , (6b)

A2 =

(
−η2t2

+
1

2
η4t4

)
a2

p +
7η4t4

6
a †

pa3
p + . . . , (6c)

A3 = iη3t3a3
p + . . . , (6d)

A4 = η
4t4a4

p + . . . , (6e)

and N1 =
∑

j=0〈A
†
j A j 〉 is the normalization constant. Here,

〈A†
j A j 〉 = p〈ψ |A

†
j A j |ψ〉p . The interaction time t is defined

by the length of the crystal [39]. The state of the signal and idler
field-modes can be calculated from ρ(t)= |9(t)〉〈9(t)| by
tracing over the pump field-mode. Thus, the reduced density
matrix ρsi(t) of the signal and idler field-modes in the basis
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{|0〉s |0〉i , |1〉s |1〉i , |2〉s |2〉i , |3〉s |3〉i , |4〉s |4〉i , . . .} can be
written as

ρsi(t)=Trp(|9(t)〉〈9(t)|)

=
1

N1



〈A†
0 A0〉 〈A

†
0 A1〉 〈A

†
0 A2〉 〈A

†
0 A3〉 〈A

†
0 A4〉 · · ·

〈A†
1 A0〉 〈A

†
1 A1〉 〈A

†
1 A2〉 〈A

†
1 A3〉 〈A

†
1 A4〉 · · ·

〈A†
2 A0〉 〈A

†
2 A1〉 〈A

†
2 A2〉 〈A

†
2 A3〉 〈A

†
2 A4〉 · · ·

〈A†
3 A0〉 〈A

†
3 A1〉 〈A

†
3 A2〉 〈A

†
3 A3〉 〈A

†
3 A4〉 · · ·

〈A†
4 A0〉 〈A

†
4 A1〉 〈A

†
4 A2〉 〈A

†
4 A3〉 〈A

†
4 A4〉 · · ·

...
...

...
...

...
. . .


.

(7)

The element 〈A†
m Am〉/N1 is the probability of detecting m

photons each in the signal and idler field-modes. Now, the
state of the signal field-mode can be obtained from ρsi(t) by
tracing it over the idler field-mode. Thus, the state of the signal
field-mode in the basis {|0〉s , |1〉s , |2〉s , |3〉s , |4〉s , . . .} can be
written as

ρs (t)=Tri (ρsi)

=
1

N1



〈A†
0 A0〉 0 0 0 0 · · ·

0 〈A†
1 A1〉 0 0 0 · · ·

0 0 〈A†
2 A2〉 0 0 · · ·

0 0 0 〈A†
3 A3〉 0 · · ·

0 0 0 0 〈A†
4 A4〉 · · ·

...
...

...
...

...
. . .


.

(8)

A similar expression can be obtained for ρi by taking the partial
trace of ρsi over the signal field-mode. We note that ρs = ρi , and
therefore, we present our analysis in the subsequent discussions
only for the signal field-mode.

Now, we discuss how the photon statistics of the signal
and idler field-modes depends on the photon statistics of
the pump field-mode. The zero time-delay second-order
correlation function of the signal field-mode is given by
g (2)s (0)= 〈a †2

s a2
s 〉/〈a

†
s a s 〉

2, where 〈a †2
s a2

s 〉 =Tr(ρs a †2
s a2

s ),
and 〈a †

s a s 〉 =Tr(ρs a †
s a s ). Using the state given in Eq. (8), we

find

g (2)s (0)=

N1
∑
k=2

k(k − 1)〈A†
k Ak〉(∑

k=1
k〈A†

k Ak〉

)2 . (9)

By using the operators given in Eqs. [(6a)–(6e)], we write Eq. (9)
to be

g (2)s (0)= 2g (2)p (0)
N1

[
1− η2t2

+
2
3η

2t2 g (3)p (0)

g (2)p (0)
n p + . . . .

]
[
1− 1

3η
2t2 +

1
36η

4t4 +
(

1
3η

2t2 −
37
36η

4t4
)

g (2)p (0)n p −
35
36η

4t4g (3)p (0)n2
p + . . .

]2 , (10)

where g (k)p (0)= 〈a
†k
p a k

p〉/〈a
†
pa p〉

k is the kth order correlation
function, and n p = 〈a †

pa p〉 is the average number of photons in

the pump field-mode. Asρs = ρi , we get g (2)i (0)= g (2)s (0).

Equation (10) shows the dependence of the photon statis-
tics of individual down-converted field-modes on the photon
statistics of the pump field-mode. It is valid for arbitrary pump
field-mode states with any down-conversion strength n pη

2t2.
A wide range of down-conversion strength is achievable exper-
imentally using a continuous-wave laser in a non-degenerate
optical parametric amplifier [39,61–63]. However, many
experiments fall under the category of being in the weak
down-conversion limit, i.e., n pη

2t2
� 1. For instance, a

404 nm pump with 100 mW power having a pump beam
waist of 0.4 mm incident on a 3 mm long BiBO crystal gives
η∼ 2.85× 103 [55]. The average number of pump photons
inside the crystal at any given time is n p =

P
~ω

Lµp
c = 3.7× 106,

where P is the pump power, and µp is the refractive index of
the pump inside the crystal. The time t , which is the travel-
ing time of the pump in the crystal, is about ∼10−11 s. This
gives the down-conversion strength n pη

2t2
∼ 10−10. In the

weak down-conversion limit n pη
2t2
� 1, Eq. (10) can be

approximated as

g (2)s (0)' 2g (2)p (0). (11)

This comes from the fact that the numerator and the denom-
inator in Eq. (10) become unity in the limit n pη

2t2
� 1. A

similar expression can be found for the idler field-mode, i.e.,
g (2)i (0)' 2g (2)p (0). The signal and idler field-modes become
super-Poissonian if g (2)p (0) > 1/2, and remain sub-Poissonian
if g (2)p (0) < 1/2. Hence, in order to produce sub-Poissonian
signal and idler field-modes, the zero time-delay second-order
correlation function of the pump field-mode has to be less
than 1/2. Moreover, the pump field-mode with g (2)p (0)= 1/2
produces signal and idler field-modes with Poissonian pho-
ton distributions. As these down-converted field-modes are
mixed individually [refer to Eq. (8)], they are known as mixed
Poissonian states [64]. Also, Eq. (11) immediately recovers a
known result that the photon statistics of the signal and idler
field-modes are thermal (g (2)s (0)= g (2)i (0)= 2) if the pump
field-mode is in a coherent state (g (2)p (0)= 1) [4,28,57].

B. n-Photon n-Mode PDC Process

Next, we consider an n-photon down-conversion process, in
which a pump photon splits into n photons of lower frequencies.
These n down-converted photons go into n separate modes, and
hence, the interaction Hamiltonian for the n-photon n-mode
down-conversion process is given by [3–6]

HI = η(a p ⊗
n
j=1 a †

j + a †
p ⊗

n
j=1 a j ), (12)

where ⊗n
j=1a j = a1 ⊗ a2 ⊗ . . .⊗ an . Here, a j is the anni-

hilation operator corresponding to j th down-converted
field-mode. The frequencies of these field-modes satisfy
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ωp =ω1 +ω2 + . . .+ωn . Here, ωp is the frequency of the
photons in the pump field-mode, andω j is the frequency of the
photon in the j th down-converted field-mode.

Let us consider that the initial state |9(0)〉 of the
pump and the down-converted field-modes at t = 0 is
|9(0)〉 = |ψp〉|0〉1|0〉2 . . . |0〉n , where |0〉 j is the vacuum
state corresponding to the j th down-converted field-mode.
The state of the down-converted field-modes can be obtained
by solving the unitary dynamics governed by the Hamiltonian
given in Eq. (12) (refer to Appendix A for calculation). From
the evolved state, we find the zero time-delay second-order
correlation function for the j th down-converted field-mode to
be

g (2)j (0)= 2(n−1)g (2)p (0)
N2

[
1− (2+2n)

6 η2t2
−

(
(1+2n)2n/2

+(3!)n/23n/2

2n/23!
−

2(3!)n

2n3!

)
n pη

2t2 g (3)p (0)

g (2)p (0)
+ . . .

]
[
1− 1

3η
2t2 +

1
36η

4t4 +

(
2(n−1) −

(1+2n)
3

)
n pη2t2g (2)p (0)+ . . .

] . (13)

This is a general result that shows the dependence of photon
statistics of individual down-converted field-modes on the pho-
ton statistics of the pump field-mode in the n-photon n-mode
down-conversion process. Now, in the limit n pη

2t2
� 1, the

denominator and numerator of Eq. (13) approach unity, and the
zero time-delay second-order correlation function becomes

g (2)j (0)' 2(n−1)g (2)p (0). (14)

This relation is true for all j , i.e., for all the down-converted
field-modes. For n = 2, this result goes over to the result for the
two-photon two-mode PDC process given in Eq. (11). The
pump field-mode with g (2)p (0)= 1/2(n−1) produces down-
converted field-modes with Poissonian photon distributions.
These field-modes are the Poissonian mixed states [64]. The
pump state with g (2)p (0) > 1/2(n−1) produces super-Poissonian
down-converted field-modes, while in the opposite limit, it
produces sub-Poissonian down-converted field-modes.

3. SINGLE-MODE PDC PROCESS

In this section, we consider the single-mode PDC process, in
which a pump photon splits into two or more photons in the
same field-mode [33,65]

A. Two-Photon Single-Mode PDC Process

The Hamiltonian that describes the two-photon single-mode
PDC process, in which a single photon splits into two photons
in the same field-mode, is [4,6]

H̃I = η(a pa †2
d + a †

pa2
d ), (15)

where ad (a
†
d ) is the annihilation (creation) operator of the

down-converted field-mode. In this case, ωp = 2ωd , where ωd

is the frequency of the down-converted photons.
Consider the initial state of the pump field-mode and down-

converted field-mode is |ψ〉p |0〉d , where |ψ〉p is the state of
the pump field-mode, and |0〉d represents the down-converted
field-mode being in the vacuum state. Then the evolved state
under the Hamiltonian given in Eq. (15) at time t is

|9(t)〉 =
1
√

N3
[B0|ψ〉p |0〉d + B1|ψ〉p |2〉d

+ B2|ψ〉p |4〉d + B3|ψ〉p |6〉d + B4|ψ〉p |8〉d + . . .],
(16)

where

B0 = 1−

(
η2t2
−
η4t4

6

)
a †

pa p +
7η4t4

6
a †2

p a2
p + . . . , (17a)

B1 = i
√

2

[(
−ηt +

η3t3

3

)
a p +

7η3t3

3
a †

pa2
p + . . .

]
, (17b)

B2 =
√

6

[(
−η2t2

+
4

3
η4t4

)
a 2

p +
11η4t4

3
a †

pa 3
p + . . .

]
, (17c)

B3 = i
√

20η3t3a3
p + . . . , (17d)

B4 =
√

70η4t4a4
p + . . . . (17e)

Here, N3 =
∑

j=0〈B
†
j B j 〉 is the normalization constant. It is

to be noted that the down-converted field-mode carries an even
number of photons, and the probability of detecting an odd
number of photons is zero. The state of the down-converted
field-mode can be calculated by tracing ρ(t)= |9(t)〉〈9(t)|
over the state of the pump field-mode. Hence, the reduced
density matrix of the down-converted field-mode in the even
photon number basis {|0〉d , |2〉d , |4〉d , |6〉d , . . .} is

ρd (t)=Trp(|9(t)〉〈9(t)|)

=
1

N3



〈B†
0 B0〉 〈B

†
0 B1〉 〈B

†
0 B2〉 〈B

†
0 B3〉 〈B

†
0 B4〉 · · ·

〈B†
1 B0〉 〈B

†
1 B1〉 〈B

†
1 B2〉 〈B

†
1 B3〉 〈B

†
1 B4〉 · · ·

〈B†
2 B0〉 〈B

†
2 B1〉 〈B

†
2 B2〉 〈B

†
2 B3〉 〈B

†
2 B4〉 · · ·

〈B†
3 B0〉 〈B

†
3 B1〉 〈B

†
3 B2〉 〈B

†
3 B3〉 〈B

†
3 B4〉 · · ·

〈B†
4 B0〉 〈B

†
4 B1〉 〈B

†
4 B2〉 〈B

†
4 B3〉 〈B

†
4 B4〉 · · ·

...
...

...
...

...
. . .


.

(18)

Here, 〈B†
j Bk〉=p〈ψ |B

†
j Bk |ψ〉p . The diagonal element, for

instance, 〈B†
k Bk〉/N3, gives the probability of detecting 2k

photons in the down-converted field-mode.
We calculate the zero time-delay second-order correlation

function corresponding to the state given in Eq. (18) to be

g (2)d (0)=
〈a †2

d a2
d 〉

〈a †
d ad 〉

2 =

N3
∑
k=1

2k(2k − 1)〈B†
k Bk〉(∑

k=1
2k〈B†

k Bk〉

)2 , (19)
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where 〈a †2
d a2

d 〉 =Tr(a †2
d a2

dρd ), and 〈a †
d ad 〉 =Tr(a †

d adρd ).
Using the operators given in Eqs. [(17a)–(17e)], we find

g (2)d (0)=
1

4npη2t2

N3
[(

1− 2
3η

2t2
)
+

40
3 npη

2t2g (2)p (0)+ . . .
]

[(
1− 2

3η
2t2
)
+

4
3 npη2t2g (2)p (0)+ . . .

]2 ,

(20)

which shows the dependence of photon statistics of the single-
mode down-converted field-mode on the photon statistics
of the pump field-mode. In the weak down-conversion limit,
Eq. (20) reduces to

g (2)d (0)'
1

4n pη2t2
. (21)

As can be seen, in contrast to the multi-mode PDC process,
the g (2)d (0) of the down-converted field-mode is not propor-
tional to the g (2)p (0) of the pump field-mode. Nevertheless,

we see that the g (2)d (0) of the down-converted field-mode is
inversely proportional to the average number of pump photons.
As η2t2n p � 1, g (2)d (0)� 1, and hence, the down-converted
field-mode is highly super-Poissonian.

B. n-Photon Single-Mode PDC Process

The interaction Hamiltonian for this process is [5]

H̃I = η(a pa †n
d + a †

pan
d ), (22)

where ad (a
†
d ) is the annihilation (creation) operator corre-

sponding to the down-converted field-mode. In this case,
ωp = nωd , where ωd is the frequency of down-converted pho-
tons. By considering the state of the pump and down-converted
modes at t = 0 to be |ψ〉p |0〉d , where |ψ〉p is the state of the
pump field-mode and |0〉d is the vacuum of down-converted
field-mode, we calculate the zero time-delay second-order
correlation function of the down-converted field-mode at time t
to be (refer to Appendix B)

g (2)d (0)=
〈a †2

d a2
d 〉

〈a †
d ad 〉

2 =
n − 1

n!nn pη2t2

N4
[(

1− n!
3 η

2t2
)
−
[

1
3

(
(2n)!

n! + n!
)
−

2n−1
2(n−1)

(2n)!
n!

]
n pη

2t2g (2)p (0)+ . . .
]

[(
1− n!

3 η
2t2
)
−
[

1
3

(
(2n)!

n! + n!
)
−

1
2
(2n)!

n!

]
n pη2t2g (2)p (0)+ . . .

]2 . (23)

For n = 2, which corresponds to the two-photon single-mode
PDC process, the above expression reduces to the expression
given in Eq. (20). In the weak-down-conversion limit, i.e.,
n pη

2t2
� 1, the zero time-delay second-order correlation

function for the n-photon single-mode PDC process becomes

g (2)d (0)'
n − 1

n!nn pη2t2
. (24)

Hence, the second-order correlation function is inversely
proportional to the average number of photons in the pump
field-mode.

4. SUMMARY

We have investigated the role of photon statistics of the
pump field-mode in deciding the photon statistics of the
down-converted field-modes in multi-mode and single-mode

parametric down-conversion processes. We have characterized
the photon statistics of the down-converted field-modes in
terms of their corresponding second-order correlation functions
and have derived general expressions for the zero time-delay
second-order correlation function for the down-converted
field-modes. In the weak down-conversion limit, we have shown
that the values of the second-order correlation functions of the
signal and idler field-modes are twice that of the pump field-
mode in the two-photon two-mode PDC process. This result
reflects a well-known fact that the signal and idler field-modes
are thermal if the pump is in a coherent state. In general, in the
weak down-conversion limit, the zero time-delay second-order
correlation function of the individual down-converted field-
modes in the n-photon n-mode down conversion process is
equal to 2(n−1) times that of the pump field-mode. In contrast
to the multi-mode PDC, the zero time-delay second-order
correlation function of the single-mode down-converted field-
modes is not proportional to that of the pump field-mode in
the weak down-conversion limit. Nevertheless, we have found
that the zero time-delay second-order correlation function
of the single-mode down-converted field-modes is inversely
proportional to the average number of photons in the pump
field-mode. Although we have used the second-order correlation
function g (2)(0) for describing and studying the multi-mode
down-converted fields, we note that for a complete description
of a field-mode, one has to study the correlation functions of
all orders and not just the second-order correlation function
[41]. The higher-order correlation functions may contain very
interesting and useful information about the down-converted
field studied in this article and may thus become a subject of
future research in this direction.

APPENDIX A: n-PHOTON n-MODE PDC
PROCESS

The interaction Hamiltonian for the n-photon n-mode down-
conversion process is [3–6]

HI = η(a p ⊗
n
j=1 a †

j + a †
p ⊗

n
j=1 a j ). (A1)

The initial state |ψ〉p |0〉1|0〉2 . . . |0〉n at t = 0 evolves under the
above Hamiltonian as

|9(t)〉 = e−i HI t
|ψ〉p |0〉1|0〉2 . . . |0〉n

=
1
√

N2
[A0|ψp〉|0〉1 . . . |0〉n + A1|ψp〉|1〉1 . . . |1〉n

+ A2|ψp〉|2〉1 . . . |2〉n + A3|ψp〉|3〉1 . . . |3〉n

+ A4|ψp〉|4〉1 . . . |4〉n . . . ,
(A2)
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where

A0 = 1−

(
η2t2

2!
−
η4t4

4!

)
a †

pa p +
(1+ 2n)η4t4

4!
a †2

p a2
p + . . . ,

A1 =

(
−iηt +

iη3t3

3!

)
a p +

(1+ 2n)iη3t3

3!
a †

pa2
p + . . . ,

A2 =

(
−

2n/2

2
η2t2
+
(2+ 2n)2n/2

4!
η4t4

)
a2

p

+
(1+ 2n)2n/2

+ (3!)n/23n/2

4!
η4t4a †

pa3
p + . . . ,

A3 = i
(3!)n/2

3!
η3t3a3

p + . . . ,

A4 =
(4!)n/2

4!
η4t4a4

p + . . . .

The state of the j th down-converted field-mode can be calcu-
lated by tracing over the pump field-mode and the rest of the
down-converted field-modes except the j th field-mode. The
reduced density matrix of the j th down-converted field-mode is

ρ j (t)=
1

N2



〈A†
0 A0〉 0 0 0 0 · · ·

0 〈A†
1 A1〉 0 0 0 · · ·

0 0 〈A†
2 A2〉 0 0 · · ·

0 0 0 〈A†
3 A3〉 0 · · ·

0 0 0 0 〈A†
4 A4〉 · · ·

...
...

...
...

...
. . .


.

(A3)
Now, the zero time-delay second-order correlation function for
this state is

g (2)j (0)=
〈a †2

j a2
j 〉

〈a †
j a j 〉

2 =

N2
∑
k=2

k(k − 1)〈A†
k Ak〉(∑

k=1
k〈A†

k Ak〉

)2

= 2(n−1)g (2)p (0)
N2

[
1− (2+2n)

6 η2t2
−

(
(1+2n)2n/2

+(3!)n/23n/2

2n/23!
−

2(3!)n

2n3!

)
n pη

2t2 g (3)p (0)

g (2)p (0)
+ . . .

]
[
1− 1

3η
2t2 +

1
36η

4t4 +

(
2(n−1) −

(1+2n)
3

)
n pη2t2g (2)p (0)+ . . .

]2 . (A4)

APPENDIX B: n-PHOTON SINGLE-MODE PDC
PROCESS

The interaction Hamiltonian for this process is [5]

H̃I = η(a pa †n
d + a †

pan
d ). (B1)

The initial state at t = 0 is given by |ψ〉p |0〉d , where |ψ〉p is
the state of the pump field-mode, and |0〉d is the vacuum of the
down-converted field-mode. Then the evolved state under the
Hamiltonian given in Eq. (B1) at time t is

|9(t)〉 =
1
√

N4
[B0|ψ〉p |0〉d + B1|ψ〉p |n〉d + B2|ψ〉p |2n〉d

+ B3|ψ〉p |3n〉d + B4|ψ〉p |4n〉d + . . .],
(B2)

where

B0 = 1−

(
n!η2t2

2
−
(n!)2η4t4

4!

)
a †

pa p

+

(
(2n)!

4!
+
(n!)2

4!

)
η4t4a †2

p a2
p + . . . ,

B1 = i
√

n!
[(
−ηt +

n!η3t3

3!

)
a p

+
η3t3

3!

(
(2n)!

n!
+ n!

)
a †

pa2
p + . . .

]
,

B2 =

√
(2n)!
2!

[(
−η2t2

+

(
n!
6
+
(2n)!

n!

)
η4t4

)
a2

p

+

(
(3n)!
(2n)!

+ n! +
(2n)!

n!

)
η4t4

12
a †

pa3
p + . . .

]
,

B3 = i

√
(3n)!
3!

η3t3a3
p + . . . ,

B4 =

√
(4n)!
4!

η4t4a4
p + . . . .

The state of the down-converted field-mode can be calcu-
lated by tracing over the pump state. Hence, the reduced
density matrix of the down-converted field-mode in the basis
{|0〉d , |n〉d , |2n〉d , |3n〉d , . . .} is

ρd (t)=Trp(|9(t)〉〈9(t)|)

=
1

N4



〈B†
0 B0〉 〈B

†
0 B1〉 〈B

†
0 B2〉 〈B

†
0 B3〉 〈B

†
0 B4〉 · · ·

〈B†
1 B0〉 〈B

†
1 B1〉 〈B

†
1 B2〉 〈B

†
1 B3〉 〈B

†
1 B4〉 · · ·

〈B†
2 B0〉 〈B

†
2 B1〉 〈B

†
2 B2〉 〈B

†
2 B3〉 〈B

†
2 B4〉 · · ·

〈B†
3 B0〉 〈B

†
3 B1〉 〈B

†
3 B2〉 〈B

†
3 B3〉 〈B

†
3 B4〉 · · ·

〈B†
4 B0〉 〈B

†
4 B1〉 〈B

†
4 B2〉 〈B

†
4 B3〉 〈B

†
4 B4〉 · · ·

...
...

...
...

...
. . .


.

(B3)
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Here, 〈B†
j Bk〉=p〈ψ |B

†
j Bk |ψ〉p .

The zero time-delay second-order correlation function for the
above state is

g (2)d (0)=
〈a †2

d a2
d 〉

〈a †
d ad 〉

2 =

N4
∑
k=1

nk(nk − 1)〈B†
k Bk〉(∑

k=1
nk〈B†

k Bk〉

)2 ,

=
n − 1

n!nn pη2t2

N4

[(
1− n!

3 η
2t2
)
−

[
1
3

(
(2n)!

n! + n!
)
−

2n−1
2(n−1)

(2n)!
n!

]
n pη

2t2g (2)p (0)+ . . .
]

[(
1− n!

3 η
2t2
)
−

[
1
3

(
(2n)!

n! + n!
)
−

1
2
(2n)!

n!

]
n pη2t2g (2)p (0)+ . . .

]2 . (B4)
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